POOR LEGIBILITY

ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

NON HAZARDOUS CONCURRENCE REQUEST FOR WOOD CEILING MATERIAL FROM THE GENERAL ELECTRIC COMPANY STANFORD AVENUE FACILITY IN LOS ANGELES, CALIFORNIA

Volume I

Prepared for:

General Electric Company San Francisco, California

Prepared by:

OHM Corporation
OHM Remediation Services Corp.

Walnut Creek, California

September 1991 10334

September 11, 1991

Ron Pilorin CAL EPA Waste Evaluation Unit P.O. Box 806 Sacramento, CA 95812-0806

Subject:

Transmittal of Non Hazardous Concurrence Request for Wood

Ceiling Material from The General Electric Company Stanford

Avenue Facility in Los Angeles, California

Dear Mr. Pilorin:

On behalf of General Electric Company please find enclosed one copy of each of the following documents:

- 1) Volume I Non Hazardous Concurrence Request for Wood Ceiling Material from The General Electric Company Stanford Avenue Facility in Los Angeles, California
- 2) Volume II Non Hazardous Concurrence Request for Wood Ceiling Material from The General Electric Company Stanford Avenue Facility in Los Angeles, California
- Chemwest Quality Assurance Program Plan.

It is our understanding that the current fee for CAL EPA review of non hazardous concurrence documentation is \$8,317. If you have any questions please call me at (510) 256-6110 Ext. 405.

Sincerely:

ack J. Gilbraith

Project Manager

cc: Irene Boczek w/Vol. 1
Jean Rice w/Vol. 1
Bong Kown

NON HAZARDOUS CONCURRENCE REQUEST FOR WOOD CEILING MATERIAL FROM THE GENERAL ELECTRIC COMPANY STANFORD AVENUE FACILITY IN LOS ANGELES, CALIFORNIA

Volume I

Prepared for:

General Electric Company San Francisco, California

Prepared by:

OHM Corporation

OHM Remediation Services Corp. Walnut Creek, California

September 1991 10334

VOLUME I

TABLE OF CONTENTS

Sec	tion		Page
1	Inti	roduction	1-1
	1.1	Facility Description	1-1
	1.2	Summary of Previous Investigations	1-3
2	Pro	cedures for Evaluating Contamination in Charred Area	2-1
	2.1	Sampling and Analytical Procedures	2-1
	2.2	Sampling	2-3
3	Was	ste Characterization	3-1
	3.1	Characterization Based on CCR 22, Article 11, Section 66696	
		Toxicity Requirements	3-1
		3.1.1 Section 66696 (a) (1), (2) and (3) Acute Toxicity Criteria	3-1
-		3.1.2 Section 66696 (4) Acute Aquatic Toxicity	3-1
		3.1.3 Section 66696 (5) Listed Substance Criteria	3-1
		3.1.4 Section 66696 (6) Toxicity Criteria	3-1
	3.2	3.1.5 Section 66696 (7) CFR 261 Listed Substance Criteria Characterization based on CCR 22, Article 11, Section 66699	3-4
		Bioaccumulative Toxicity Requirements	3-5
	3.3	• • • • • • • • • • • • • • • • • • •	3-7
		Section 66703 Reactivity Criteria	3-7
		Section 66704 Corrosivity Criteria	3-7
	3.6	Proposed Waste Classification	3-7
4		uest for California Department of Health Services (DHS) acurrence with Classification	4-1
5	Ref	erences	5-1
		FIGURES	
•		FIGURES	-
Fig	ure		
1-1	Site	Location	1-2
1-2	Site	Layout	1-4
2-1		t Building Sampling Locations	2-2

10334

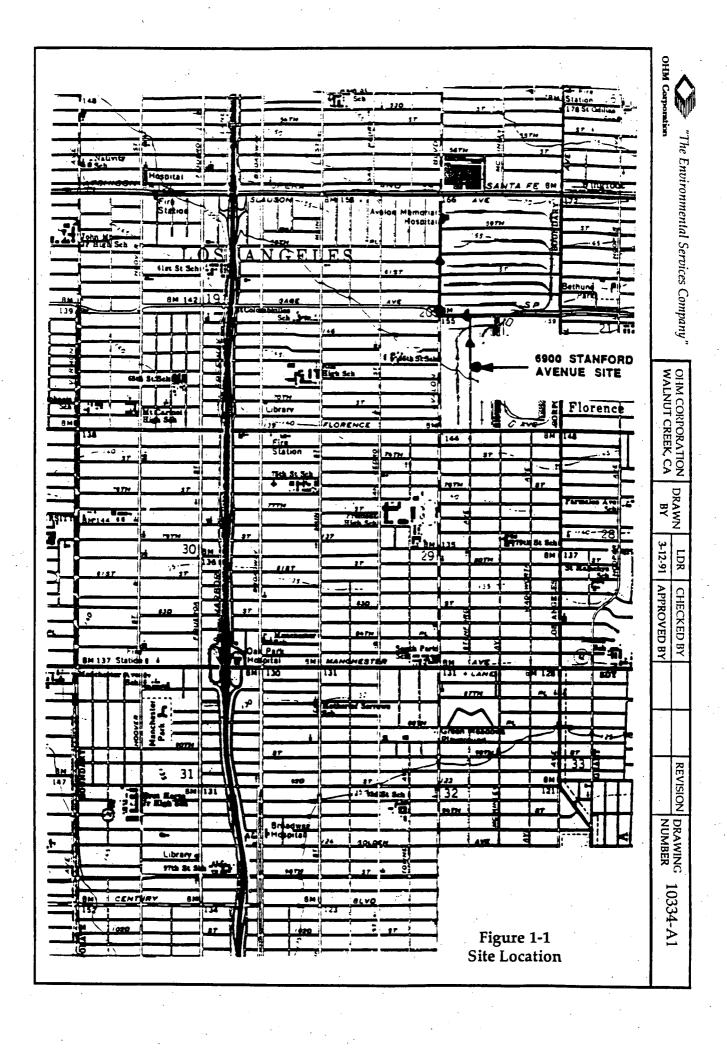
TABLE OF CONTENTS (cont'd)

TABLES

		Page
2-1	2,3,7,8 Congeners PCDDs/PCDFs Detected in Ceiling Wood	2-4
3-1	International Toxicity Equivalency Factors (I-TEFs) and DHS TEFs	3-3
3-2	Values of TCDD Calculated Using the I-TEF Approach	3-5
3-3	Values of TCDD Calculated Using the DHS-TEF Approach	3-6
API	PENDICES	
Vol	ume I	
App	pendix A - Previous PCDD/PCDF Analytical Results	្តុំធ្វ
App	pendix B - Summary of CompuChem PCDD/PCDF Analytical Re	sults
App	pendix C - TCDDEquivalents Calculations	
App	pendix D - Waste Classification Form and Certification	•
Vol	ume II	
App	pendix E - CompuChem CLP Packages	

SECTION 1

INTRODUCTION

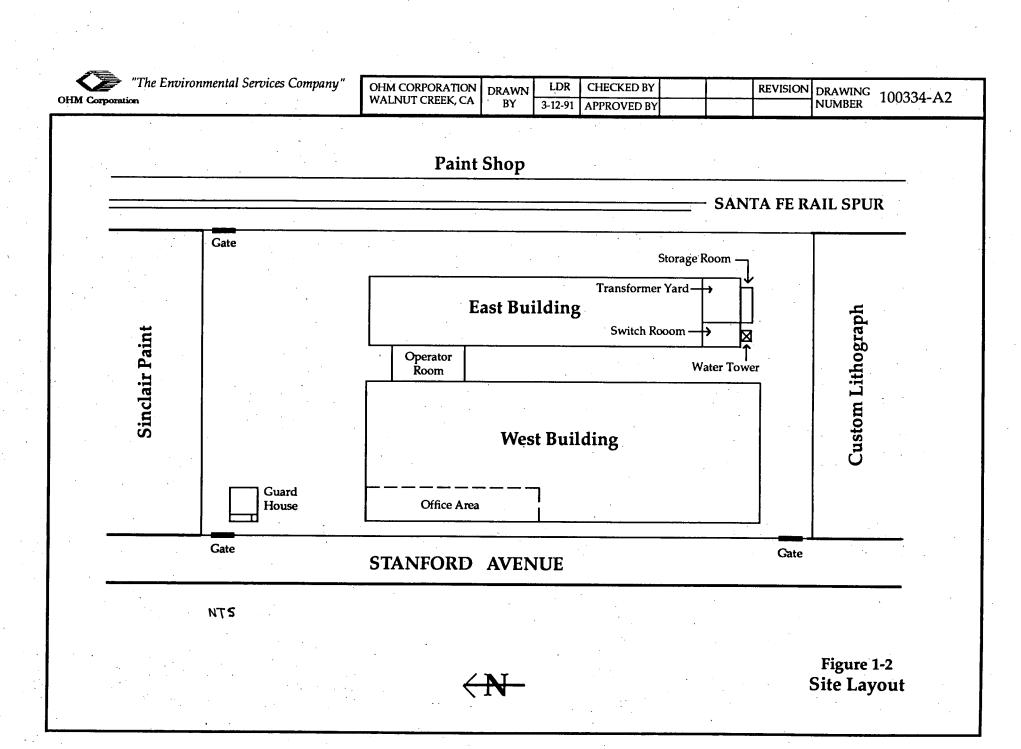

This report presents General Electric Company's (GE) conclusion that charred wood ceiling materials from the East Building of the former GE facility located at 6900 Stanford Avenue in Los Angeles are nonhazardous based on the California hazardous waste characterization criteria set forth in California Administrative Code (CAC) Title 22, Article 11. Pursuant to CAC Title 22, Article 2, Section 66305 (c), GE seeks California Department of Health Services (DHS) concurrence with the nonhazardous determination. OHM Remediation Services, Inc. (OHM), conducted the analysis on behalf of GE.

GE currently plans to demolish and dispose of surface structures at the Stanford Avenue facility. GE is in the process of characterizing site materials for proper disposal. Prior investigation conducted at the former GE facility has indicated the presence of polychlorinated biphenyls (PCBs) in certain building materials. A portion of the ceiling in the East Building is charred and several samples collected from this area indicated PCBs at concentrations ranging from 17 to 19 milligrams-per-kilogram (mg/kg). Because of the potential for polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) to be associated with fires involving PCBs, samples were analyzed for these compounds. This report provides the results of this sampling and analytical effort.

A brief description of the the GE Stanford Avenue facility is provided in Section 1.1. Section 1.2 presents a summary of past investigations of the charred ceiling of the East Building. Sections 2 presents the procedures for sampling and analysis as well as analytical results. Section 3 contains the characterization of the ceiling material. Waste characterization according to the CAC Title 22, Article 11 criteria are discussed in Sections 3.1 through 3.5. The waste classification determined for the waste by GE is provided in Section 3.6. Section 4 presents GE's requests for DHS concurrence with the classification.

1.1 Facility Description

The facility is located at 6900 Stanford Avenue, Los Angeles California (Figure 1-1). The property is in a light industrial and commercial area and is bordered to the north by Sinclair Paint Company, to the east by a Santa Fe Rail spur, to


the south by Custom Lithograph, and to the west by Stanford Avenue. The facility occupies approximately 1.4 acres, most of which is covered by two main buildings (Figure 1-2). The dimensions of the West Building are approximately 300 feet by 100 feet. The building is constructed of brick walls and has a wood ceiling. The East Building is of similar construction and is approximately 300 feet by 50 feet in size. Other small structures on the property consist of a guard house, an operator room that connects the two main buildings, a transformer yard, a storage room, a water tower, and a switch room.

1.2 Summary of Prior Investigations

Between July 1984 and March of 1985, Med-Tox Associates Corporation (Med-Tox) was directed by Endura Metals (then occupant of the facility) to collect environmental samples. Med-Tox collected a scrape sample from the charred area of the East Building ceiling. The sample was analyzed for PCDDs and PCDFs by Brehm Laboratory (Wright State University). Analytical results showed a 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) concentration of 0.498 micrograms per kilogram (ug/kg)and a 2,3,7,8-tetrachlorodibenzo-p-furan (2,3,7,8-TCDF) concentration of 24.3 ug/kg (Med-Tox, 1985). Laboratory results are included in Appendix A-1. No quality assurance data or chain-of-custody documents are available for the Med-Tox data.

On May 15, 1985, seventeen samples were collected from various media (ie., cardboard, wood, dust and residue, soil, and surface wipes) present at the site for PCB, PCDD and PCDF analyses. The samples were split and equally divided between Med-Tox, Bechtel National, Inc. (Bechtel) and the State of California Department of Health Services (DHS). The Med-Tox samples were analyzed by Brehm Laboratory. Results indicated that 2,3,7,8-TCDD was not detected in any of the samples (see Appendix A-2). Of the samples analyzed sample number SP0515-1 had the highest concentration of 2,3,7,8-TCDF. A 2,3,7,8-TCDF concentration of 27.4 ug/kg was reported for the sample. This scrape sample was collected from the ceiling area. The Med-Tox analyses did not include results for cogeners chlorinated in the 2,3,7,8-position for each of the other isomeric group (penta through octa).

Bechtel's laboratory subcontractor was Lars-Owe Kjeller (Umea Uiversitet) of Sweden. Lars-Owe Kjeller analyzed six of the split samples for PCDFs. Analytical results and sample locations are shown in Appendix A-3. The highest 2,3,7,8-TCDF concentration was 18 ug/kg found in Bechtel sample number BC0515-1. This scrape sample was a split of the Med-Tox sample number SP0515-1 described above. Analytical results for PCBs indicated a concentration of 17 mg/kg in a scrape sample collected in the same area.

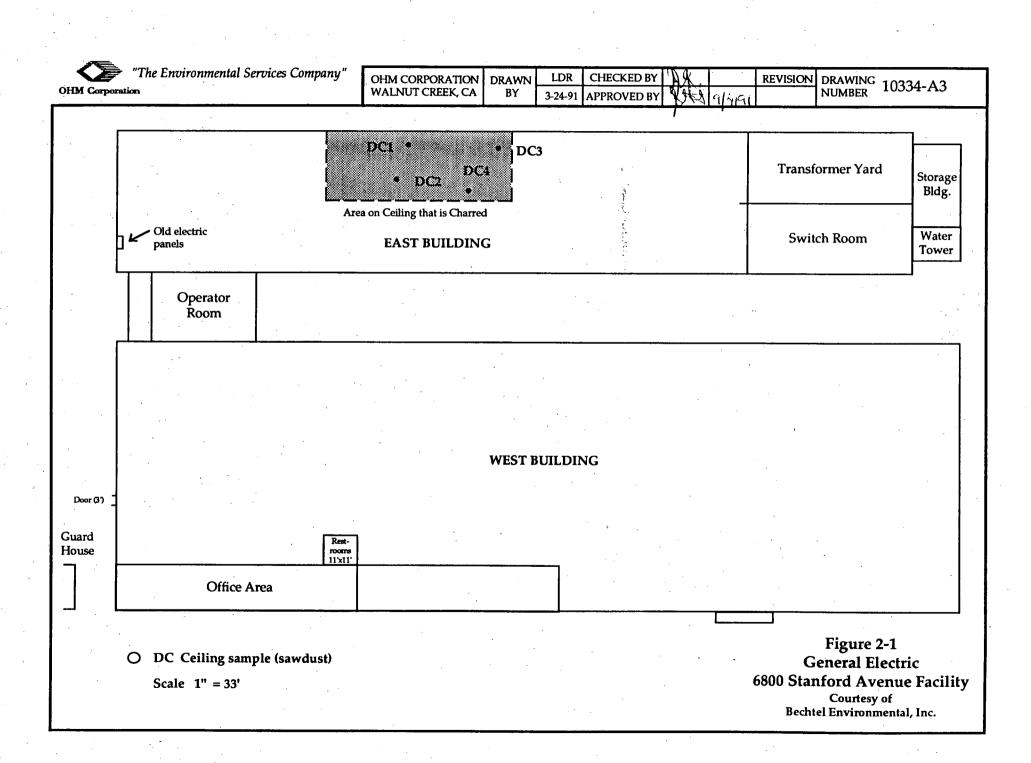
DHS analytical results if any for the split samples were not reported to General Electric.

10334

SECTION 2

PROCEDURES FOR EVALUATING PCDDs/PCDFs IN THE CEILING MATERIALS LOCATED IN THE EAST BUILDING

A portion of the roof sheathing measuring 30 feet by 50 feet in the East Building is charred. The roof sheathing consists of 3/4-inch nominal planks and has an estimated total volume of 3.5 cubic yards. As previously mentioned GE plans to demolish and dispose of the surface structures at the facility. To prepare for these activities, waste generated must be properly characterized.


To properly characterize the waste, a representative sample of the waste must be analyzed. A representative sample is "... a sample of a universe or whole which can be expected to exhibit the average properties of the universe or the whole"(CAC, Title 22, Section 66178). Randomly selected cores of the roof sheathing are representative samples.

Samples collected during previous investigations were scrape samples not cores of the wood. These samples are not appropriate for waste characterization because scrapes from a portion of the wood would not exhibit average properties of the entire plank. In addition, it would not be reasonable to separate the wood into sections because 1) the depth of charring varies and 2) the depth penetrated by PCDDs and/or PCDFs is unknown. Therefore cores of the wood were collected and analyzed for PCDDs and PCDFs.

2.1 Sampling and Analytical Procedures

Sawdust samples of ceiling material were collected from four locations within the area of interest in the East Building on December 20, 1990. The four sample locations (DC1, DC2, DC3, and DC4) are shown on Figure 2-1. The sample team used a scissor lift to reach the ceiling area. A power drill equipped with a 1.375-inch diameter bit was used to drill into the 3/4-inch wood ceiling. The wood planking was fully penetrated by the drill bit in order to collect a representative sample of the charred material. The resulting sawdust was collected on clean butcher-type paper and transferred into pre-cleaned 6 oz. wide mouth jars. Two jars full of sawdust were collected at each location to ensure that the laboratory received a minimum of 30 grams per sample.

The sample jars were sealed, and shipped under chain-of-custody procedures for analysis to Compuchem - Western Division laboratory. Sample procedures, documentation and custody procedures were consistent with Section One of "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, 2nd edition, U.S. Environmental Protection Agency (EPA), 1982. Compuchem is certified by the EPA to perform PCDD/PCDF analysis.

Samples received at the Compuchem laboratory in Sacramento, California were analyzed using EPA Method 8280 for PCDDs/PCDFs. Each analysis included data quality assurance documentation equivalent to EPA Contract Laboratory Procedures (CLP).

2.2 Sampling Results

Analytical results for PCDDs and PCDFs are presented in Table 2-1. Results indicate that 2,3,7,8-TCDD was not detected in the samples. The maximum detection limit was 1.5 ug/kg. Penta through octa chlorinated dibenzodioxins and tetra through octa chlorinated dibenzofurans were detected in one or more of the samples. The complete laboratory summary is included in Appendix B. CLP documentation is provided in Appendix E.

Table 2-1 2,3,7,8 Congeners PCDDs/PCDFs Detected in Ceiling Wood from the GE Stanford Facility

Compound ^a	Sample Number and Concentration (ug / kg or ppb)						
PCDDs	DC1	DC2	DC3	DC4			
2,3,7,8 - TCDD other TCDD PeCDD HxCDD HpCDD OCDD	<1.5 1.5 <1.5 1.3 4	<0.5 - 0.27 1.8 2.5 1.4	<0.5 0.25 1.03 2.58 <2.1	<0.54 <0.53 1.2 0.83 <2.25			
PCDFs 2,3,7,8 - TDCF other TCDF 1,2,3,7,8 - PeCDF 2,3,4,7,8 - PeCDF HxCDF HpCDF OCDF	<3.4 - 0.57 0.67 4.5 2.7 <2.1	1.7 0.62 2.5 6.3 3.9 <2.1	1.3 - 0.37 1.3 3.5 2.05 1.3	1.44 - 0.37 1.38 3.53 2.09 <1.38			

^a The compounds of concern for each homologous class are those isomers chlorinated at the 2,3,7,8 positions. The relative percent of these isomers in each isomers class is the number of congeners chlorinated at the 2,3,7,8 positions divided by the total number of congeners.

SECTION 3

WASTE CHARACTERIZATION

In order to determine if the wood ceiling material should be classified as hazardous or nonhazardous, information about the material was compared with DHS Criteria for identification of Hazardous and Extremely Hazardous Waste (CAC 22, Article 11).

3.1 Characterization based on CAC 22, Article 11, Section 66696 Toxicity Criteria

The following sections provide a characterization based on Article 11, Section 66696. For details of each criteria see CAC 22, Article 11.

3.1.1. Section 66696 (a) (1), (2) and (3) Acute Toxicity Criteria

Section 66696 (a) (1), (2) and (3) establish toxicity based on acute oral, dermal and inhalation criteria. Acute toxicity testing of the wood ceiling material was not performed as part of this study. Based on the low concentrations of PCDDs and PCDFs in the samples (see Table 2-1) and the TCDD equivalancy analysis performed persuant to Section 66696 (6), the ceiling material is not considered acutely toxic. A complete summary of PCDDs/PCDFs analyses is presented in Appendix B.

3.1.2 Section 66696 (4) Acute Aquatic Toxicty Criteria

Section 66696 (4) acute aquatic toxicity testing was not performed as part of this study. Based on the low concentrations of PCDDs and PCDFs in the samples (see Table 2-1) and the TCDD equivalency analysis performed persuant to Section 66696 (6), the ceiling material is not considered acutely toxic to aquatic life. See Section 3.1.4 for toxicity evaluation.

3.1.3 Section 66696 (5) Listed Substance Criteria

GE does not believe that the wood ceiling material contains any of the substances listed in Section 66696 (5) at a single or combined concentration exceeding 0.001 percent by weight. Therefore, the wood is not considered hazardous on this basis.

3.1.4 Section 66696 (6) Toxicity Criteria

Although the wood is not a dioxin-contaminated waste based on its concentration of 2,3,7,8,-TCDD (see Section 3.2), other compounds are present

that could affect toxicity. The toxicity of the mixture of other PCDDs/PCDFs was evaluated to ensure that the waste was not toxic and hazardous under the criteria presented in Article 11, Section 66696 (6).

Article 11, Section 66696 (6) states that a waste is toxic and hazardous if it "has been shown through experience to pose a hazard to human health or environment because of its carcinogenicity, acute toxicity, chronic toxicity, bioaccummulative properties or persistence in the environment;".

Polychlorinated dibenzodioxins and polychlorinated dibenzofurans are believed to share a common toxic mechanism, with individual congeners differing widely in potency. The most biologically active congeners tend to be chlorinated in the 2,3,7,8-position. For regulatory purposes the relative carcinogenic potencies of the other PCDDs/PCDFs are generally estimated based on a comparison of their overall toxicity with that of 2,3,7,8,-TCDD (NATO, 1988).

2,3,78-TCDD Toxicity Equivalence Determination

Regulatory agencies have established procedures for estimating risks associated with exposure to PCDDs/PCDFs, based on their potency relative to that of 2,3,7,8-TCDD (Eadon et al 1982, EPA 1986, NATO 1988). The values developed by a workgroup of NATO are currently being used as the preferred toxicity equivalence factors by most international agencies including the USEPA. The international equivalence factors (I-TEFs) derived from a comparison of the relative potencies are presented in Table 3-1. To estimate the potency of complex PCDD or PCDF mixtures, the concentrations of the 2,3,7,8-chlorinated congeners in each isomeric group are multiplied by an appropriate I-TEF. For example, to derive a potency factor for a mixture of hepta-chlorodibenzodioxins (HpCDDs), the quantity of HPCDDs chlorinated at the 2,3,7 and 8 positions would be multiplied by a factor of 0.01 to obtain a TCDD_{equiv} (2,3,7,8-TCDD toxicity equivalent value). Thus, according to the ranking scheme, 2,3,7,8-chlorinated HpCDDs are considered to be 100 times less potent than 2,3,7,8-TCDD.

The California DHS developed somewhat different TEFs for evaluating the toxicity of PCDDs/PCDFs mixtures (Hiatt, G 1989). The DHS TEF approach consists of using a factor of 1 for 2,3,7,8-chlorinated TCDD, PeCDDs, TCDF and PeCDFs; a factor of 0.03 for 2,3,7,8-chlorinated HxCDDs, HpCDDs, HxCDFs and HpCDFs; and a factor of 0 for all other PCDDs/PCDFs. The DHS TEF factors are presented in Table 3-1.

In order to ensure that the mixture of PCDDs/PCDFs present in the wood ceiling material was not toxic and hazardous, the TCDD_{equiv} for the samples

Table 3-1
International Toxicity Equivalency Factors
(I-TEFs) and TEFs Developed
by the California DHS

		·			
Congener of Concern	I - TEF	DHS - TEF			
PCDDs					
2,3,7,8 - TCDD 1,2,3,7,8 - PeCDD 1,2,3,4,7,8 - HxCDD 1,2,3,6,7,8 - HxCDD 1,2,3,7,8,9 - HxCDD	1 0.5 0.1 0.1 0.01	1 1 0.03 0.03 0.03			
1,2,3,4,6,7,8 - HpCDD	0.01	0.03			
OCDD	0.001	0			
PCDFs					
2,3,7,8 - TDCF	0.1	1			
2,3,4,7,8 - PeCDF 1,2,3,7,8 - PeCDF	0.5 0.05	1 1			
1,2,3,4,7,8 - HxCDF 1,2,3,7,8,9 - HxCDF 1,2,3,6,7,8 - HxCDF 2,3,4,6,7,8 - HxCDF	0.1 0.1 0.1 0.1	0.03 0.03 0.03 0.03			
1,2,3,4,7,8,9 - HpCDF 1,2,3,4,7,8,9 - HpCDF	0.01 0.01	0.03 0.03			
OCDF	0.001	0			
Other PCDDs/PCDFs	0	0			

Source: NATO 1988; Hiatt, G 1989

were compared with the persistant and bioaccumulative toxicity criteria established for 2,3,7,8-TCDD in Article 11, Section 66699 (2) (c). Under CAC Title 22, Article 11, Section 66699 (2) (c) a material is considered to be hazardous if it contains 2,3,7,8-TCDD at a concentration exceeding the Soluble Threshhold Limit Concentration of 1 microgram-per-liter (ug/L) or exceeding the Total Threshold Limit Concentration (TTLC) of 10 ug/kg.

The TEF approaches developed by both the NATO and DHS were used to calculate TCDD equivalent values. Table 3-2 presents the TCDD_{equiv} for the I-TEF approach and Table 3-3 presents TCDD_{equiv} for the DHS TEF approach. The maximum TCDD_{equiv} calculated using the two approaches are <3.6 ug/kg (I-TEF) and <7.9 ug/kg (DHS TEF). See Appendix C for TCDD_{equiv} calculations. Based on a comparison of these two values with the TTLC of 10 ug/kg for 2,3,7,8-TCDD, the wood material is not considered hazardous.

Extractable concentrations were not determined for comparison to the STLC since the TCDD_{equiv} was less then 10 times the STLC. If the total concentration for a "Type i" (millable solid) substance is less than 10 times its respective STLC, then determination of the extractable concentration using the Waste Extraction Test (WET) procedure is not required (DHS, July 1987).

3.1.5 Section 66696 (7) CFR 261 Listed Waste Criteria

The wood ceiling material is not from any source listed in 40 CFR 261. Therefore, the waste is not hazardous based on the criteria established in Section 66696 (7).

3.2 Characterization Based on CAC 22, Article 11, Section 66699 Bioaccumulative Toxicity Criteria

Under CAC Title 22, Article 11, a material is considered to be a dioxin-contaminated waste if it contains 2,3,7,8-TCDD at levels above the Soluble Threshhold Limit Concentration of 1 microgram-per-liter (ug/L) or above the Total Threshold Limit Concentration (TTLC) of 10 ug/kg. The analytical results presented in Table 2-1 indicate that 2,3,7,8,-TCDD was not detected in the ceiling material. The maximum detection limit was 1.5 ug/kg. The ceiling material is not considered hazardous based on the bioaccumulative toxicity criteria. The Waste Extraction Test (WET) was not performed as discussed in Section 3.1.4.

Table 3-2
Values of TCDD
Calculated Using the I-TEF Approach

Compound ^a ,b	Sample Number and Concentration (ug / kg or ppb)						
PCDDs	DC1	DC2	DC3	DC4			
2,3,7,8 - TCDD other TCDD PeCDD HxCDD HpCDD OCDD	<1.5 0.75 0.15 0.013 0.004	<0.05 0.135 0.18 0.024 0.001	<0.5 - 0.125 0.1 0.026 0.002	<0.5 <0.25 0.12 0.008 0.002			
PCDFs							
2,3,7,8 - TDCF other TCDF 1,2,3,7,8 - PeCDF 2,3,4,7,8 - PrCDF HxCDF HpCDF OCDF TCDD equivalent	0.34 0.03 0.335 0.45 0.027 <0.002	0.17 0.03 1.25 0.63 0.039 <0.002	0.13 - 0.02 0.65 0.35 0.02 <0.001	0.14 0.02 0.69 0.35 0.02 <0.001			

^a The compounds of concern for each homologous class are those isomers chlorinated at the 2,3,7,8 positions. The relative percent of these isomers in each isomers class is the number of congeners chlorinated at the 2,3,7,8 positions divided by the total number of congeners.

b The compound was not detected at the listed detection limit. The detection limit was used to calculate the TCDDequiv and consequently the reported TCDDequiv is the maximum possible value and could be lower.

Table 3-3
Values of TCDD
Calculated Using the DHS-TEF Approach

Compound ^{a,b}	Sample Number and Concentration (ug / kg or ppb)							
PCDDs	DC1	DC2	DC3	DC4				
2,3,7,8 - TCDD other TCDD PeCDD HxCDD HpCDD OCDD	<1.5 - 1.5 0.045 0.039 0	<0.5 0.27 0.054 0.07 0	<0.5 0.25 0.03 0.08 0	<0.5 - <0.05 0.036 0.025 0				
PCDFs								
2,3,7,8 - TDCF other TCDF 1,2,3,7,8 - PeCDF 2,3,4,7,8 - PrCDF HxCDF HpCDF OCDF	3.4 0.57 0.67 0.135 0.081 0	1.7 - 0.62 2.5 0.189 0.117 0	1.3 0.37 1.3 0.105 0.06 0	1.44 0.37 1.38 0.106 0.06 0				
TCDD equivalent	7.9	6.0	4.0	4.4				

^a The compounds of concern for each homologous class are those isomers chlorinated at the 2,3,7,8 positions. The relative percent of these isomers in each isomers class is the number of congeners chlorinated at the 2,3,7,8 positions divided by the total number of congeners.

b The compound was not detected at the listed detection limit. The detection limit was used to calculate the TCDDequiv and consequently the reported TCDDequiv is the maximum possible value and could be lower.

3.3 Section 66702 Ignitability Criteria

The wood ceiling material would not be considered hazardous on the basis of ignitability as described in Section 66702.

3.4 Section 66703 Reactivity Criteria

The wood ceiling material would not be considered a reactive and hazardous waste based on Section 66703 criteria.

3.5 Section 66704 Corrosivity Criteria

The wood ceiling material would not be considered a corrosive and hazardous waste based on Section 66704 criteria.

3.6 Proposed Waste Classification

The study indicated that 2,3,7,8-TCDD was not detected in samples from the site at a maximum detection limit of 1.5 ug/kg and, therefore, do not meet the criteria for a California dioxin contaminated waste under Section 66699. The levels of TCDD_{equiv} in the ceiling material are probably in the range of 2 - 4 ug/kg based on the I-TEF approach and in the range of 4 - 8 ug/kg based on the DHS TEF approach. These values are all below the TTLC level for 2,3,7,8-TCDD of 10 ug/kg. Based on these results, the PCDDs/PCDFs present at the facility are not considered a California toxic waste under Section 66696 (6). In addition, the material would not be considered an Extremely Hazardous Waste by any of the criteria in CAC 22, Article 11, Section 66717.

SECTION 4

REQUEST FOR CALIFORNIA DEPARTMENT OF HEALTH SERVICES CONCURRENCE WITH CLASSIFICATION

General Electric Company requests concurrence from the California DHS with the determination that the wood ceiling material (approximately 3.5 cubic yards) from the East Building of the Stanford Avenue Facility is not a dioxincontaminated waste. GE will handle and dispose of the ceiling material during building demolition in accordance with all applicable State of California and federal regulations.

SECTION 5 REFERENCES

- State of California, California Administrative Code, Title 22, Social Security, Division 4, Environmental Health, Chapter 30 Minimum Standards for Management of Hazardous and Extremely Hazardous Wastes, as amended through May 8, 1990.
- Med-Tox Associates Corporation, May 15, 1985. Occupational and Environmental Survey at Endura Metals. Report to Endura Metals.
- Eadon G., Aldous, K., Frenkel, G., Gierthy, J., Hilker, D., Kaminsky, L., O'Keefe, P., Silkwoth, J., and Smith R. 1982. Comparison of chemical and biological data on soot samples from the Binghamton State Office Building. New York State Department of Health, Albany, New York. March 1982.
- Environmental Protection Agency (EPA) 1986. Interim Procedures for Estimating Risk Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and Dibenzofurans (CDDs and CDFs). Risk Assessment Forum. Washington, D.C. April 1986.
- Environmental Protection Agency (EPA) 1990. Health Effects Assessment Summary Tables: Fourth quarter, FY 1990. Office of Health and Environmental Assessment, Cincinnati, Ohio, September 1990. OERR 9200.6-303-(90-4)
- Hiatt, G.F.S., Regional Expert Toxicologist. [Letter to Hargis and Associates, La Jolla, California] 1989. July 14.
- Kociba, R.J., Keyes, D.G., Beyer, J.E., Carreon, R.M., Wade, C.E., Dittenber, D.A., Kalnins, R.P., Frauson, L.E., Park, C.N., Barnard, S.D., Hummell, R.A., and Humiston, C.G. 1978. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol. Appl, Pharmacol. 46:279-303.
- National Toxicology Program (NTP). 1982b. Carcinogenesis Bioassay of 2,2,7,8-Tetrachlorodibenzo-p-dioxin (CAS No. 1746-01-6) Swiss-Webster Mice (Dermal Study). NTP Technical Report Series No. 201. Washington, D.C. DHEW Publication No. (NIH) 82-1757.
- National Toxicology Program (NTP). 1982b. Carcinogenesis Bioassay of 2,2,7,8-Tetrachlorodibenzo-p-dioxin (CAS No. 1746-01-6) in Osborne-Mendel Rats and B6C3F1 Mice (Gavage Study). NTP Technical Report Series No. 209. Washington, D.C. DHEW Publication No. (NIH) 82-1765.

- North Atlantic Treaty Organization (NATO) 1988. Pilot Study on International Information Exchange on Dioxins and Related Compounds. International Toxicity Equivalency Factor (I-TEF) Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Committee on the Challenges of Modern Society. Report No. 176, August 1988.
- David J. Leu, Ph.D., AlternativeTechnology Division, Toxic Substance Control Division, California Department of Health Services, July 23, 1987.

 Interpretation of the Waste Extraction Test. Memo to Certified Hazardous Laboratories.

Appendix A

Previous PCDD/PCDF Analytical Results

Appendix A-1

Med-Tox/Brehm Laboratory Analytical Results For Samples Collected Between July 1984 - March 1985

PCDD/PCDF: analysis performed by Brehm Laboratory

ocation	Type	Concentration/ppt		
ack Building				
eiling Area	2,3,7,8-TCDD	0.498		
	total tetra dioxin	30.1		
•	total penta dioxin	93.6		
•	/total hexa dioxin	75.6		
	total hepta dioxin	69.6		
	total octa dioxin	11.6		
	2,3,7,8-TCDF	24.3		
	total tetra furan	102.0		
	total penta furan	166.0		
	total hexa furan	67.1		
,	total hepta furan	62.2		
,	total octa furan	20.9		

Appendix A-2

Med-Tox/Brehm Laboratory Analytical Results For Samples Collected On May 15, 1985

OCCUPATIONAL & ENVIRONMENTAL HEALTH SERVICES

401 Warner Ave., Sulte A . Tustin, California 92680 . (714) 669-0620

July 29, 1985

Mr. Bob Menchen
ENDURA MFTAL PRODUCTS
6900 Stanford Avenue
Los Angeles, CA 90001

Dear Mr. Menchen:

Enclosed please find a copy of a table of data in which the concentrations of CDDs/CDFs present in the Endura Metal Products samples which were sent to the Brehm Laboratory for analysis are listed. Analyses of extracts of these same samples are being completed in which the concentrations of PCBs and PCP are being quantitated and these data will be telephoned to you as soon as possible. Our complete report will follow in about 10 days.

Thank you for your patience.

Sincerely

Don R. Thorne, Ph.D. Toxicologist/Principal

DRT:pc/RH:107 Enclosure

BADHA CABORATORY, MAIGHT STATE UNIVERSITY, SAYTON, DAID 45435

RESULTS OF HEXTLANDS AND ISES OF SANDLES FOR TETRACHICALISTIC THATILAN CONTINUED DIRECTIONS (CONTINUED DIRECTIONS) DIRECTIONS (CONTINUED DIRECTIONS) & 2,17,8-TETRA-CONTINUED A 2,17,8-TETRA-CONTINU

Concentrations Found (nanograms per gram of sample or parts-per-offlion) & ...b.

	\checkmark	sac of	sage of		•		1.4	; V	siec of							
MEDITAL UNDER L. MO	Brens 2378 Lab Tetro MGL TGDO	3C12 2378	Surro-	Total Total Tetra Penta CDDs CDDs	Me48	write U	cța Wi	ופנ ופנ	8 37C:4 ra 2378 ra 2378	Total Tetra CCFs	Penta	***	TETA LFS	acta Cor	Sample	
		0 55.1	105.9		MO.			0.0	. 85 36. 2	11.0	27.3	ક્રુ.૧	25.9	:20	5 70515	-4
ş : !: -!	PESS-3 3 1. 12		181.6		NO.	· 4. 6 7	7.37 7	6. 9	in the	5. 84	7.41	12.4	13:7	10.8		3
المثلة من		 			NO	10 . 0467 E.	NO 18	9.8	10 · 51.4	N5 1.8933	ND 8. 0151 (ND N. 6:65 (ND 8. 6~≥0	1. 8656		
L BLAN		0 46.4		NO 10 8.6854 8.814	140 9 8.6251 8	10 L 8-34 8.			NO 43.3	10 8. 2178	NO 2. 0076 :	NO 8. 4:68	•€ •. 137•	8. 9135		
Ş15 -6	RIS-6 6	7) 96.1 167	91.5	ND NO 4.0:19 4.013	. 6517	6.271	L 458 9	71.5 E.	631 188.0	e.257	1.6%	1.11	4.623	€.31€	•	(_s)
? 7:15→ ?	€25-4 p ^{C.A.} 4D 3.8	10 TZ.	2 %.6	N N	, 10 4 (1.623	2.31	4.69 :1	N. 9 (V	3. RE 08.9	16.1	47.8	30.2	ē3. 9	175	•	4 dup.
: .315-5	15 5 1. A	k0 67.1 838	7 %.6	6.6162 NO 6.616	e.133 [*]	ė. 264 – (L 482 11	N. 3 (<u>a</u>	9).5	6. 103	8. 167	7.3%	0.173	0.124		5
515-18	1605-18 10 8. A	40, 98.1 427	8 53.4	8. 8953 NO 8. 818	# 8. 22 14 (L 8947 (0.457	97.4 (0.	0157 129.0	e. (6 5)	ē. 85 €7	€. 14€	1. NH 32	Q. 2357		10
J.515-11	•€55-11 (1 d	10 4.º	9 93.6	NO NO 8,256 8,55	0. 13 0.685	6. 413 ·	1.16	53.9	4.5	N Lis	e. 899	2.58	€. •29	4.63		11
	e.4	33 40 €.	2 %.9	NO NO 1.24 8.21	4.239 H	6.29	£ 46	4.4 (1. 37 788.0	£. 73	9. 89	17.3	13.1	13.3	••	3 mb
. £15-7	€18-7 7 •.	119 42.	7 86.8	RD NE 0.8876 8.3	1.64	177	13.5 1	19.8 (1.87 66.4	14.0	15.7	31.6	20.1	32.4		7
- 515 -9	€ ≈-9 9 . 8	10 46. 1245	5 79.5	1.1146 1.62		6.286	L 2 7	п. е. п	241 4.5	4. 16	5. 29	2.28	1.25	₹. 554	٠	7
/515 -5	#£35-6 ℃	10 SZ.	6 128.9	1 10 H	0 4.267 SS	0.599	1.21	ונ.נז 📗	1.39 49.5	6.52	13.2	29.7	14.7	21.3	·	3
~15:5-:3	155-13 13 8.6	NO 67. NASA	7 21.6	1 10 H	93 1. M21	e. 283	1.00	80.8	.0178 98.4	L 463	1.432	1.648	0.113	ND 3.124		13
1515- 12	PED5-12-0	NO 52. 1373	1 %.1	1 E. 8956 N B. 67	D .B. 446 43	4. 271	€. 23	58.8	1.27 53.4	4,73	6.64	273	(4.3 -1	HD 4.117		iz
~515-12		N 26		0.4117 B. 66	18 8.8532	L 1658 (L 6478		. 8873 52.6			E. 8541	10 4.11	NO 0.170		ur e
_/EIS-1	⊮EβS−1 i	ND 94.	3 %.:	15.1 70	.1 78.6	53-5	7.49	74.8	27.4 188.0	88.8	172	112	2 11.	7.45	570515	- 1
~₹515-2	435-2 Z	NO 82.	.0 94.5	5 0.250 a	0 1.97 75	1.67	2.68	69.0	250 100)	7.96	21.2	19.3	3 6.69	4.69		2

- The designation 80 indicates "More Detected" in excess of the minimum detectable concentration which is listed directly colon the AG designation.
- L. Unless otherwise indicated, the concentrations listed for 2,3,7,8 TOF could include contributions from covering TOF iscours.
- E Duplicate sample. A separate aliquot of the sample was weighed, entracted, and the concentrations of CDDs/CBFs were quantitated in a separate analysis.
- d. Poor recoveries for the 13C12-2.3,7,8-1C00 and 37C1c3,7,8-1C0F internal standards were obtained due to interferences.
- e. RES 5-12-0 is a sample aliquot which was obtained from the surface of the wood block (the paint was scraped from the surface). RES 5-12-1 is a sample aliquot which was obtained from the sub-surface (by drilling into the block) of the wood block.

BEST AVAILABLE COPY

LOCATION OF SAMPLES

- SP0515-1 East (back) building, ceiling repeat of positive sample
- SP0515-2 East (back) building, ceiling above easternmost double doors
- SP0515-3 East (back) building, floor general area
- SP0515-4 East (back) building, floor crack or grate area
- SP0515-5 West (front) building, ceiling Les Menchen's office
- SP0515-6 West (front) building, floor general area
- SP0515-7 West (front) building, floor crack or grate area
- SP0515-8 Rear of east (back) building, sump area
- SP0515-9 Rear of east (back) building, asphalt area NE corner near railroad tracks
- SP0515-10 East (back) of building, product "cardboard" sample
- SP0515-11 West (front) building, product "wipe sample"
- SP0515-12 East (back) building clean wood sample from ceiling
- SP0515-13 Control; clean soil sample from outside of building upstream of contamination

Additional control samples:

- a) Ferformance sample
- b) Laboratory blank

Appendix A-3

Bechtel/Lars-Owe Kjeller Laboratory Analytical Results For Samples Collected On May 15,1985

4-14-36

MEĀ UNIVERSITET

Avdelningen för organisk kemi

Telefon 090 - 16 50 00

./.

Christoffer Rappe, Mi

UNIVERSITY OF UMEA

Department of Organic Chemistry

A TENT REAL MARKET.

Telephone 46 - 90 - 16 50 00

1985-10-02

HAZARDOUS CHEMICAL WASTE KENNETH 1981AR OCT 11 1985

Dr. Kenneth E. Barr Project Manager Advanced Technology Division Bechtel National Inc. P.O. Box 3965 San Francisco, CA 94119

Dear Dr. Barr,

In our earlier report unfortunately our samples # 5 and # 6 (your 8 and 12) were exchanged. We have now reanalyzed these samples. Enclosed please find correct tables and chromatograms. I hope this clarifies some questions.

Sincerely yours

Christoffer Rappe, professor

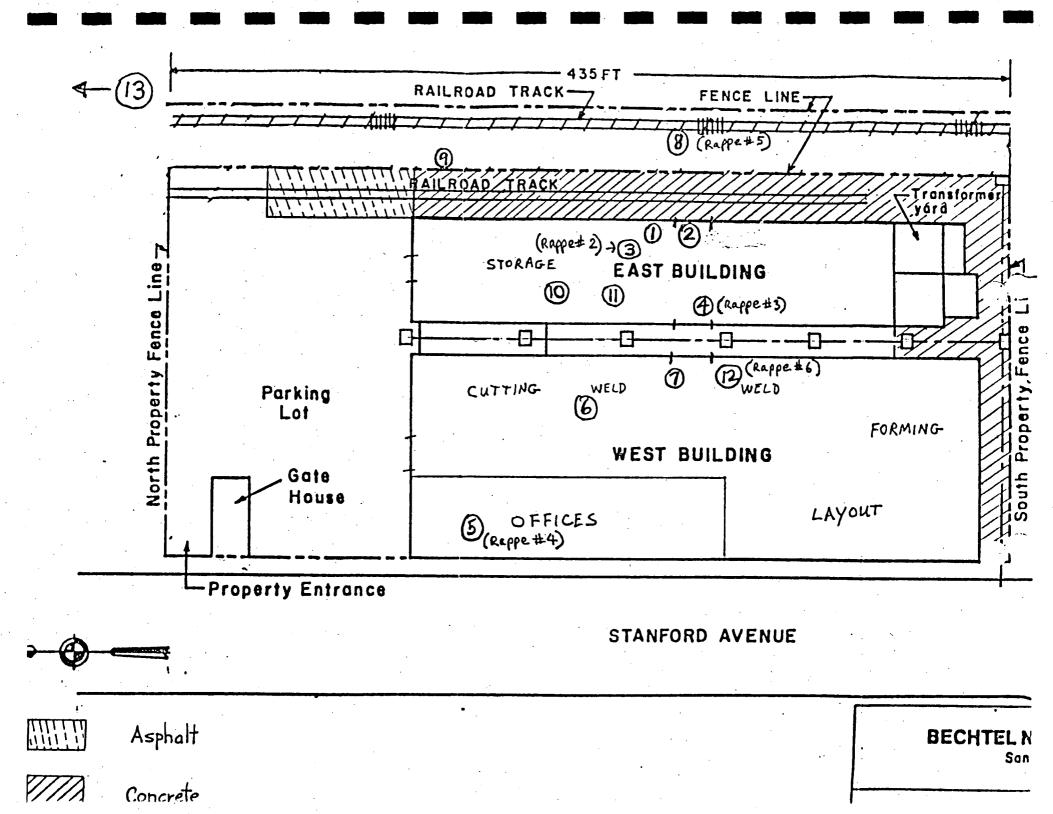
Bechtel National, Inc. Att: Kennet E. Barr

			ACC: F	vennet r.
Levels of dioxins and	dibensofur	ans.		
,	majky	-343	~9/	E may
MPR 455:	1	2	3	4
Att nr. BC0515-	1	3	4	5
2,3,4,8-/ 2.3.7.8-TCDF Tot. TCDF's	18	1.1	3.2 19	1.5 5.6
REC 13C-2378-TCDF	57	69	33	83
2.3.7.8-TCDD Tot. TCDD's	NA NA	NA NA	NA NA	NA NA
1.2.3.4.8-/ 1.2.3.7.8-PnCDF 2.3.4.7.8-PnCDF Tot. PnCDF's	39 96 740	5.5 9.4 130		18 21 140
REC 13C-12378-PnCDF	66	69	53	87
1.2.3.7.8-PnCDD Tot. PnCDD's	0.77 25	0.03 0.45		ND ND
1.2.3.4.7.9-/ 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.7.8.9-HxCDF 2.3.4.6.7.8-HxCDF Tot. HxCDF's	9.2 4.3 3.3 9.7 68	2.8 0.42 0.78 0.72 26	2.5 7.1	12 1.2 2.5 1.5
REC 13C-123478-HxCDF	64	66	31	94
1.2.3.4.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.7.8.9-HxCDD Tot. HxCDD's	3.0 5.2 1.1 45	0.19 0.27 0.03 1.5	1.6	0.85
Tot. HpCDF's	31	13	64	41
REC 13C-1234678-HpCDF	59	49	44	81
Tot. HpCDD's	20	3.7	4.8	6.0
OCDF	5.1	15	89	53
REC 13C-OCDP	45	22	40	56

Bechtel National, Inc. Att: Kennet E. Barr

<u>Valus</u> of <u>dioxins</u> and <u>dibensofurans</u>.

MPR 445:	5 A	5B	6 A	6B
Att nr. BC0515-	8	8	12	12
2,3,4,8-/ 2.3.7.8-TCDF Tot. TCDF's	1.2	1.2	0.20 0.55	0.26 0.71
2.3.7.8-TCDD Tot. TCDD's	NA NA	NA NA	NA NA	NA NA
1.2.3.4.8-/ 1.2.3.7.8-PnCDF 2.3.4.7.8-PnCDF Tot. PnCDF's	1.4 3.9 21.0	0.9 2.9 15.6	0.20 0.56 3.5	0.17 0.41 2.6
1.2.3.7.8-PnCDD Tot. PnCDD's	ND ND	ND ND	ND ND	ND ND
1.2.3.4.7.9-/ 1.2.3.4.7.8-HxCDF 1.2.3.6.7.8-HxCDF 1.2.3.7.8.9-HxCDF 2.3.4.6.7.8-HxCDF Tot. HxCDF's	2.7 0.37 0.94 0.35 9.8		0.18 0.03 0.05 0.05 0.34	0.14 0.04 0.08 0.03
1.2.3.4.7.8-HxCDD 1.2.3.6.7.8-HxCDD 1.2.3.7.8.9-HxCDD Tot. HxCDD's	0.08 0.03 ND 0.12	0.06 0.01 ND 0.10	ND ND ND 0.04	ND ND ND
Tot. HpCDF's	7.8	3.7	0.38	0.24
Tot. HpCDD's	0.22	0.13	0.6	0.05
OCDF	12.6	5.3	0.17	0.24
OCDD	1.2	0.41	0.12	0.17


The valus is given in ng/g.

NA = Not Analyzed

ND = Not Deteted, Detecion limit 0.01-0.02 ng/g.

The values are given in ng/g. for sample 1,2,3.5,6 and for sample 4, ng. tot. in sample NA = Not Analyzed

ND = Not Deteted, Detection limit 0.01-0.02 ng/g.

UMEA UNIVERSITET

Avdelningen för organisk kemi

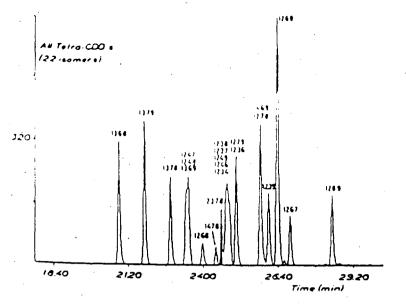
Telefon 090 - 16 50 00

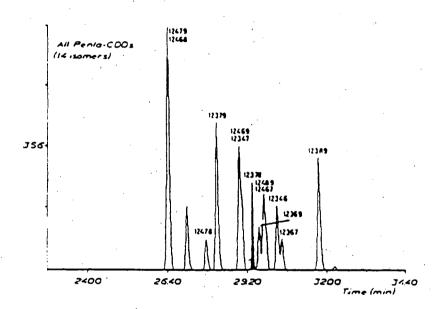
UNIVERSITY OF UMEA

Department of Organic Chemistry

Telephone 46 - 90 - 16 50 00

Christoffer Rappe, Mj


1985-06-19


Analytical protocol

The samples are spiked using $^{13}\mathrm{C}_{12}$ -labelled standards prior to extraction (soxhlet-toluene). In the clean-up systems we are using columns of alox, silica gel and carbon.

For the HRGC separation we are using a SP 2330 column, which can separate the toxic PCDDs and PCDFs, see enclosed fragmentograms. For the quantification we use a mass spectrometer and the reported figures are based on the recovery of the 13 C-labelled standards.

Postal address S-901 87 UMEA Post giro account 1 56 13 - 3

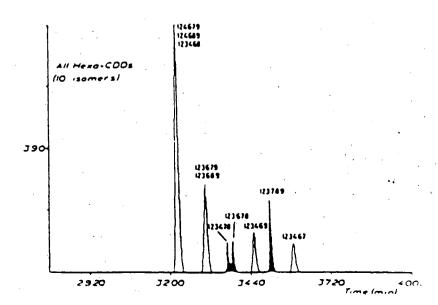
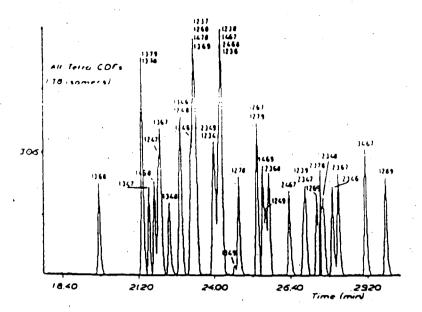
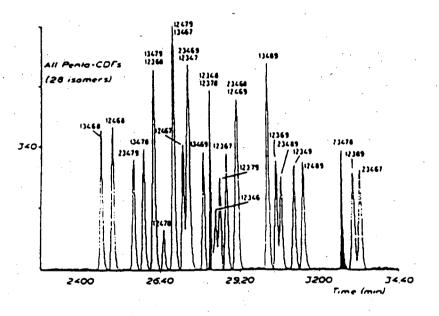
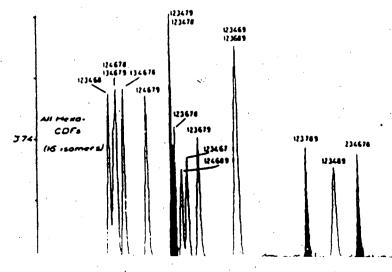





Fig. 3-1. Separation of the 22 terms 14 nents and

CHAIN OF CUSTODY RECORD

BECHTEL PR	OJECT NO	17282-	00			Bechtel Nat' Inc				
	Y PROJECT NO	4	·	SAMPLER'S SIGNATURE LE PONT						
SITE IDENTIF	ICATION	in dura		BECHTEL	SUPERVIS	OR				
			DATE 666	185	-					
SAMPLE ID	MATRIX OF Sample	TIME TAKEN	PRESERVATIVES	ARCHIVE	ANALYZE	REMARKS				
BC0515-1	WOOD. SHAUING	15 May 85	None		L					
Be0515-3	DUST & SOIL	,, .	16		~					
BC0515-4	DUST + PESIDNE	. L	ų		<u></u>					
8C0515-5	FILTER MAT'L	4	"(v					
80515-8	Soil	1.	ι		L					
BC0515-12	WOOD	1.	٠,		\ \cup \					
·										
			·							
RÉLINQUISHE	D BY K.5	Barr	DATE/TIME 66	PS 1500	REC	EIVED BY				
RELINQUISHE			DATE/TIME							
RELINQUISH			DATE/TIME			1 - 10~ 10				
RECEIVED B		Kanbo	FOR I			•				
	FOR DISPOS		T\	*.						
RELINQUISH	ED TO		FOR (ISPOSAL.	DATE/T	IME				

CHAIN OF CUSTODY RECORD

ECHTEL PR	OJECT NO	17282-0	201	SAMPLER	'S NAME .	MED-lox			
LABORATOR	Y PROJECT N	o		SAMPLER	'S SIGNATU	BE Coly			
ITE IDENTIF	ICATION	NDURA		BECHTEL SUPERVISOR S.BW					
			DATE 5/5/						
			DATE TO TO	U 9	•				
	· .								
SAMPLE ID NUMBER	MATRIX OF Sample	TIME TAKEN	PRESERVATIVES	ARCHIVE	ANALYZE	REMARKS			
	6000 Surface	4Tog pM	None		~				
GE 0515-8					-				
3E0515-12					<i>-</i>				
5E0515-13	3012								
1 (0000)	u. C. l.				<i>i</i> —				
	Wood Surface Wood Surface				<i>u</i>	· · · · · · · · · · · · · · · · · · ·			
BC0315-2	Dust & SIL				V				
	Dust & Residuc				<i>i</i>				
30355-5	FILTER MATL				<u></u>				
	DUST & SOIL				<i>-</i>	· · · · · · · · · · · · · · · · · · ·			
20515-7	Dast & Residue			 	<u></u>				
300515-8	Soi-				<i>i</i>				
BC 0515-9	301-				~				
300515-10	CARDBUARD			 	-				
1 2 2	wipe JAmple				L				
3C0515-12	Wood				~				
1800515-13	Soil	A	V		U				
		•							
				11/6-	,	KED			
			•			EIVED BY K.E.Bew			
PELINQUISHE	D BY		DATE/TIME		REC	EIVED BY			
						EIVED BY			
RECEIVED B	Υ		FOR L	ABORATO	RY, DAT	E/TIME			
UTHORIZED	FOR DISPOS	AL BY	Т	PE OF DIS	POSAL	·			
RELINQUISH	ED TO		FOR I	NSPOSAL	DATE/TI	ME .			

Appendix B

Summary of CompuChem PCDD/PCDF Analytical Results

February 14, 1991

Bechtel Corporation P.O. Box 3965 San Francisco, CA 94119-3965

Attention: Mr. Russ Stenzel

Subject: Report of Data - Case Number 7363

Dear Mr. Stenzel:

Enclosed you will find additional data sheets for the CL4-CL8, Method 8280 Analysis of CHEMWEST sample numbers 7363-1,2,3; your sample numbers DC1, DC2, and DC3.

Project Number: 17282-003.

Due to matrix effects some of the internal standard recoveries of the above samples were low. In order to obtain better data the samples have been re-extracted at a smaller sample size (2 grams) and re-analyzed. Results for samples DCl (CW#7363-1RX), DC2 (CW#7363-2RX) and DC3 (CW#7363-3RX) are enclosed in this report. Sample DC4 (CW7363-5) is currently being re-analyzed and the results will be ser under separate cover upon completion.

Should you have any questions please do not hesitate to contact me a (916)923-0840.

Sincerely,

Jill B. Henes, Ph.D. Vice-President of Technical Services

.cc: File

FEB 1 9 1991

R.A. STENZEL

March 7, 1991

Bechtel Corporation 50 Beale Street San Francisco, CA 94119

Attention: Mr. Russ Stenzel

Subject: Report of Additional Data - Case Number 7363

Dear Mr. Stenzel:

Enclosed you will find additional data sheets for the CL4-CL8, Method 8280 Analysis of CHEMWEST sample number 7363-5RX; your sample number DC4.

Project Number: 17282-003.

Sample CW#7363-5 was originally extracted and analyzed at 7.22g and reported to you on January 18, 1991. The analysis resulted in low internal standard recovery amounts. This sample has been reextracted and re-analyzed at 2.04g with much improved internal standard recoveries. Due to the lower starting weight, however, some of the lower level hits reported previously were not present.

CHEMWEST apologizes for any inconveniences this may have caused you. Should you have any further questions please do not hesitate to contact me at (916)923-0840.

Sincerely,

Jill B. Henes, Ph.D.

Vice-President of Technical Services

cc: File

MAR 1 1 1991 R.A. STENZEL

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INSTRUMENT ID : CW-1

CURVE: ST1910130D,C,E,F,G

COMMENTS:

DATE:

02/06/91

PG.1

INJ TIME:

11:28

CHEMIST____

CHEMWEST ID:

7363-1RX

REVIEW

SAMPLE ID:

DC1

SAMPLE SIZE:

2.07 G

	SCAN #	AREA	AREA*	RATIO	RRF	STD AMT	AMT	DL .
13C12-2378-TCDD 1.S.	1028 (332)	180293 (334)	7 4264 248007	0.73	1,24	25	11.82	\$
13C12-1234-TCDD R.S.	1019 (332)	1367330 (334)	1692020	0.81	0	25		
37CL4-2378-TCD0 SUR.	1028	(328)	144888		0.87	10	97.20	\$
2378-TCDD	0 (320)	0 (322)	4128	-	1.1	0	0	1.526
TOTAL TODD	0 (320)	0 (322)	4128	-	1.1	0	0	1.526
13C12-12378-PeCDD 1.S.	1269 (370)	238896 (368)	104048 353520	0.68	0.9	25	23,21	1
TOTAL PeCDD	0 (358)	0 (356)	5920	<u>.</u>	1.15	0	0	1.494
12378-PeCDD	0 (358)	0 (356)	5920	-	1.15	0	0	1.494
13C12-123678-HxC00 I.S.	1504 (404)	454976 (402)	148 32 0 572128	0.80	0.72	25	46.96	*
13C12-123678-HxCDD SURR.	1526 (404)	603064 (402)	795248	0.76	1.13	25	123.0	\$
TOTAL HXCDD	1409-1526 (392)	134552 (390)	198976	0.68	1.04	. 0	4.038	-
123478-HxCDD	0 (392)	0 (390)	3304	-	1.04	0	. 0	0.647
123678-HxCDD	1505 (392)	9648 (390)	14816	0.65	1.04	0	0.300	- MP
123789-HxCDD	1525 (392)	21184 (390)	28320	0.75	1.04	0	0.574	- MF
13C12-1234678-HpCDD I.S.	1737 (438)	504064 (436)	145325 526160	0.96	0.52	25	59.80	*
TOTAL HPCDD	1686-1737(426)	148672 (424)	137696	1.08	1.09	. 0	2.899	-
1234678-HpCDD	1737 (426)	59712 (424)	59904	1.00	1.09	0	1.261	-
13C12-0CD0 1.S.	1952 (470)	899392 (472)	262 5 89 1007 3 90	0.89	0.38	100	39,16	\$
осов	1953 (458)	102624 (460)	105984	0.97	1.27	•. 0	4.001	-

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INSTRUMENT ID : CW-1

CURVE: ST1910130D,C,E,F,G

COMMENTS:

DATE:

02/06/91

PG.2

INJ TIME:

11:28

CHEMWEST ID:

7363-1RX

SAMPLE ID:

DC1

SAMPLE SIZE:

2.07 G

	SCAN #	AREA		AREA*	RAT10	R RF	STD	AMT	DL
13C12-2378-TCDF 1.S.	994 (316)	144183	(318)	51136 180064	0.80	1.75	25	6.081	\$
2378-TCDF	0 (304)	o	(306)	6432		1.11	0	0	3.421
TOTAL TCDF	0 (304)	0	(306)	7616	-	1.11	0	0	4.051
13C12-12378-PeCDF IS	1201 (354)	419976	(352)	201603 738432	0.57	1.24	25	35,19	*
TOTAL PeCDF	1202-1256(342)	135247	(340)	232390	0.58	1.26	. 0	3.016	
12378-PeCDF	1202 (342)	19744	(340)	44128	0.45	1.26	. 0	0.572	- . •
23478-PeCDF	1247 (342)	31388	(340)	51968	0,60	1.26	0	0.674	-
TOTAL HXCDF	1370-1489(376)	343744	(374)	416000	0.83	1.59	0	5.522	-
123478-HxCDF	1439 (376)	115968	(374)	127264	0.91	1.59	0	1,689	·
123678-HxCDF	1449 (376)	36640	(374)	53280	0.69	1.59	0	0.707	-
234678-HxCDF	1489 (376)	84960	(374)	78272	1.09	1.59	0	1.039	- · •
123789-HxCDF	0 (376)	0	(374)	7799	-	1.59	0	0	0.999
13C12-1234678-HpCDF SUR	1663 (422)	661664	(420)	746112	0.89	1.63	25	86.99	\$
TOTAL HPCDF	1663-1691(410)	160600	(408)	175496	0.92	1.53	0	2.632	-
1234678-HpCDF	1664 (410)	125280	(408)	125216	1,00	1.53	0	1.878	-
1234789-HpCDF	0 (410)	0	(408)	5892	-	. 1,53	0	0	0.800
OCDF	0 (442)	. 0	(444)	7424		1.64	0	. 0	2.082

DATE:

02/06/91

PG.1

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INJ TIME:

12:04

CHEMIST_

INSTRUMENT ID : CW-1

CHEMWEST ID:

7363-2RX

CURVE: ST1910130D,C,E,F,G

SAMPLE ID:

DC2

COMMENTS:

SAMPLE SIZE:

1.99 G

							STD		
	SCAN #	AREA		AREA*	RATIO	RRF	AMT	AMT	DL
		,		539930					
13C12-2378-TCDD 1.S.	1025 (332)	1401700	(334)	1729470	0.81	1.24	25	74.53	\$
13C12-1234-TCDD R.S.	1016 (332)	1511400	(334)	1871200	0.81	0	25		
37CL4-2378-TCD0 SUR.	1025		(328)	1115110		0.87	10	102.3	\$
2378-TCDD	0 (320)	0	(322)	9696	-	1.1	0	0	0.513
TOTAL TCDD	0 (320)	0	(322)	96 96	-	1.1	0	. 0	0.513
			•	356872	•				
13C12-12378-PeCDD 1.S.	1266 (370)	7 5609 6	(368)	1184260	0.64	0.9	25	70.32	\$
TOTAL PeCDD	1157-1297(358)	312992	(356)	338768	0.92	1.15	0	3.124	-
12378-PeCDD	1267 (358)	35840	(356)	29592	1.21	1.15	0	0.272	-
•	•			302691	•				
13C12-123678-HxCDD 1.S.	1501 (404)	813568	(402)	1058160	0.77	0.72	25	78 .54	\$
13C12-123678-HxCDD SURR.	1523 (404)	899168	(402)	1150570	0.78	1.13	25	96.22	*
TOTAL HxCDD	1405-1522(392)	486939	(390)	637904	0.76	1.04	0	7.282	-
123478-HxCDD	1496 (392)	25091	(390)	24317	1.03	1,04	0	0.277	
123678-HxCDD	1502 (392)	34016	(390)	55443	0.61	1.04	0	0.632	-
123789-HxCDD	1522 (392)	55288	(390)	81120	0,68	1,04	. 0	0.926	-
				208165				•	
13C12-1234678-HpCDD 1.S.	1733 (438)	690160	(436)	738976	0.93	0.52	. 25	75.94	*
TOTAL HpCDD	1682-1733(426)	196176	(424)	256808	0.76	1.09	0	4.005	_
1234678-HpCDD	1733 (426)	98768	(424)	153184	0.64	1.09	0	2.389	· -
				378744					• .
13012-0000 1.5.	1947 (470)	1243510	(472)	1396790	0.89	0.38	100	49.10	1
OCDD	1948 (458)	37824	(460)	48512	0.78	1.27	ŏ	1.374	- .

DATE:

02/06/91

PG.2

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INJ TIME:

12:04

INSTRUMENT ID : CW-1

CHEMWEST ID:

7363-2RX

CURVE: ST1910130D,C,E,F,G

SAMPLE 10:

DC2

COMMENTS:

SAMPLE SIZE: 1.99 G

	SCAN #	AREA	į	AREA*	RATIO	R RF	STD AMT	AMT	DL
13C12-2378-TCDF .S.	991 (316)	2075960	(318)	8 5983 0 2610240	0.80	1.75	25	79.71	\$
2378-TCDF	992 (304)	304576	(306)	399352	0.76	1.11	0	1.731	-
TOTAL TCDF	935-1022(304)	771448	(306)	1001623	0.77	1.11	0	4,342	-
13C12-12378-PeCDF IS	1198 (354)	1216410	(352)	58 2509 1890100	0.64	1.24	25	81.45	\$
TOTAL PeCDF	1087-1272(342)	1529991	(340)	2429680	0.63	1.26	0 ,	12.81	·
12378-PeCDF	1199 (342)	76155	(340)	118248	0.64	1.26	0	0.623	.=
23478-PeCDF	1244 (342)	317252	(340)	479680	0.66	1.26	0	2.530	-
TOTAL: HxCDF	1367-1544(376)	1172623	(374)	1431728	0.82	1.59	. 0	10.69	-
123478-HxCDF	1436 (376)	319601	(374)	418416	0.76	1.59	0	3.124	-
123678-HxCDF	1445 (376)	120368	(374)	156896	0.77	1.59	0	1.171	
234678-HxCDF	1485 (376)	193680	(374)	239968	0.81	1.59	0	1.791	-
123789-HxCDF	0 (376)	0	(374)	2 592	÷ ,	1.59	0	0	0.169
13C12-1234678-HpCDF SUR	1659 (422)	955384	(420)	1036340	0.92	1,63	25	86.03	\$
TOTAL HPCDF	1660-1688(410)	373344	(408)	477535	0.78	1,53	0	5.306	-
1234678-HpCDF	1660 (410)	283680	(408)	295568	0 .96	1.53	0	3.284	-
1234789 - HpCDF	0 (410)	. 0	(408)	6480	• .	1.53	0	0	0.639
OCDF	(442)		(444)	10392	-	1,64	0	0	2.102

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INSTRUMENT ID : CW-1

CURVE: ST1910130D,C,E,F,G

COMMENTS:

DATE:

02/06/91

PG.1

INJ TIME:

13:12 -

CHEMIST____

CHEMWEST ID:

7363-3RX

REVIEW !

SAMPLE ID:

DC3

SAMPLE SIZE:

2.06 G

	SCAN #	AREA		AREA*	RAT10	R RF	STD	AMT	DL
13C12-2378-TCDD 1.S.	1013 (332)	1446440	(334)	57 753 0 1766980	0.82	1.24	25	72.28	\$
13C12-1234-TCDD R.S.	.1004 (332)	1599270	(334)	1971370	0.81	0	25		
37CL4-2378-TCD0 SUR.	1014		(328)	1129980	-	0.87	-10	101.0	\$
2378-TCDD	0 (320)	. 0	(322)	9888	-	1.1	0	0	0.472
TOTAL TODD	0 (320)	Ō	(322)	9888	-	1.1	0	. 0	0.472
13C12-12378-PeCDD 1.S.	1255 (370)	760240	(368)	347066 1221440	0,62	0.9	25	68.84	*
TOTAL PeCDD	1145-1286(358)	237401	(356)	298104	0.80	1.15	0	2.575	- 1
12378-PeCD0	1256 (358)	23136	(356)	29304	0.79	1.15	0	0.253	- 1
				274600	}		,		
13C12-123678-HxC0D 1.S.	1490 (404)	786880	(402)	1024320	0.77	0.72	25	72.16	*
13C12-123678-HxCDD SURR.	1512 (404)	869088	(402)	1137770	0.76	1.13	25	98.29	\$
TOTAL HxCDD	1394-1510(392)	251504	(390)	381287	0 .66	1.04	0	4.343	-
123478-HxCDD	1487 (392)	14996	(390)	19922	0.75	1.04	, 0	0.226	- 1
123678-HxCDD	1491] (392)	17604	(390)	29312	0.60	1.04	0	0.333	- !
123789-HxCDD	1510 (392)	21568	(390)	41184	0.52	1.04	0	0.469	. -
13C12-1234678-HpCDD 1.S.	1722 (438)	662832	(436)	175528 691224	0.96	0,52	25	67.42	*
TOTAL HPCDD	1671-1723(426)	96416	(424)	106252	0.91	1.09	0	1,711	-
1234678-HpCDD	1723 (426)	48576	(424)	54344	0.89	1.09	0	0.875	à
				342930					
13C12-0CDD 1.S.	1937 (470)	1180410	(472)	1287670		0.38	100	42.97	\$
OCDD	0 (458)	C	(460)	7776	7.	1.27	Ō	. 0	2.167

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INSTRUMENT ID : CW-1

CURVE: ST1910130D,C,E,F,G

COMMENTS:

DATE:

02/06/91

PG.2

INJ. TIME:

13:12

CHEMWEST ID:

7363-3RX

SAMPLE ID:

DC3

SAMPLE SIZE:

2.06 G

•					STD					
	SCAN #	AREA		AREA*	RATIO	RRF	STD	AMT	DL	
13C12-2378-TCDF 1.S.	979 (316)	2101780	(318)	8 56403 261 373 0	0.80	1.75	25	75.76	x	
2378-TCDF	981 (304)	226224	(306)	302464	0 .75	-1.11	0	1.265	· -	
TOTAL TCDF	935-1010(304)	635040	(306)	817871	0.78	1.11	0	3.421	-	
13C12-12378-PeCDF IS	1186 (354)	1 228070	(352)	541558 1977520	0.62	1.24	25	80.89	\$	
TOTAL PeCDF	1075-1241(342)	933316	(340)	1894772	0.49	1.26	0	9.228	· - .	
12378-PeCDF	1187 (342)	51200	(340)	76363	0.67	1.26	0	0.371	-	
23478-PeCDF	1233 (342)	173734	. (340)	271544	0.64	1.26	. 0	1.322	-	
TOTAL HXCDF	1356-1474(376)	512565	(374)	722256	0.71	1.59	0	5,381	-	
123478-HxCDF	1425 (376)	161840	(374)	220692	0.73	1.59	0	1.644	-	
123678-HxCDF	1834 (376)	58616	(374)	86828	0.68	1.59	0	0.646	• .	
234678-HxCDF	1474 (376)	92976	(374)	101664	0.91	1.59	0	0.757		
123789-HxCDF	0 (376)	0	(374)	7072	. -	. 1 . 59	0	0	3.49	
13C12-1234678-HpCDF SUR	1648 (422)	907200	(420)	1007800	0 .90	1,63	25	89.44	\$	
TOTAL HpCDF	1649-1665(410)	148704	(408)	161031	0.92	1,53	0	1.847	- ,	
1234678-HpCDF	1649 (410)	135544	(408)	123984	1.09	1,53	0 -	1.422	-	
1234789-HpCDF	0 (410)	0	(408)	5 568	-	1.53	0	0	0.629	
OCDF	0 (442)	0	(444)	6048	-	1.64	0	0	1.305	

COLUMN: 60M X0.32MM ID, 0.25 UM FILM DB-5

INSTRUMENT ID : CW-1

CURVE: ST1910304E, D, F, G, H

COMMENTS:

DATE:

03/04/91

PG.1

INJ TIME:

16:23

CHEM IST____

CHEMWEST ID:

7363-5RX

EVIEW ___

SAMPLE ID:

DC4

SAMPLE SIZE:

2.04 G

					ADEAÐ	RAT 10	r r e	STD'	AMT	
	SCAN #		AREA		AREA*		1//QF	~~-	~~~~~~ ~~~~~~	DL .
					376664			25	70.04	
13C12-2378-TCDD 1.S.	1081 (3	32)	958660	(334)	1165920	0.82	1.23	25	72.81	\$
13012-1234-TCDD R.S.	1072 (3	32)	1028850	(334)	1301870	0.79	0	25	•	
37CL4-2378-TCDD SUR.	1082			(328)	707008	- .	0.86	10	96.73	\$
2378-TCDD	0 (3	20)	0	(322)	7072	-	1.07	0	0	0.538
TOTAL TODD	0 (3	20)	0	(322)	7072	-	1.07	0	. 0	0.538
·				•	284723					
13C12-12378-PeCDO I.S.	1325 (3	70)	606199	(368)	966136	0.63	0 .96	25	77.30	, \$
TOTAL PeCDD	1215-1277(3	58)	72192	(356)	107080	0.67	1.16	0	1.170	
12378-PeCDD	0 (3	58)	0	(356)	5696	- .	1.16	0	0	0.528
	·				204730					
13C12-123678-+xCDD 1.S.	1561 (4	. (104)	644288	(402)	783808	0.82	0.75	25	80.27	\$
13C12-123678-HxCDD SURR.	1583 (4	104)	761840	(402)	911664	0.84	1.16	25	100.2	\$
TOTAL HXCDD	1464-1583(3	392)	187520	(390)	271652	0.69	1.05	. 0	4.045	-
123478-16CDD	0 (3	392)	. 0	(390)	2356	·. •	1.05	0	0	0.336
123678-HxCDD	1563 (3	592)	24576	(390)	27038	0.91	1.05	0	0.402	- +
123789-HxCDD	1583 (3	592)	31392	(390)	31312	1.00	1.05	0	0.466	- h
					- 152454					
13C12-1234678-HpCDD 1.S.	1798 (4	438)	586984	(436)	618864	0.95	0.57	25	83,39	\$
TOTAL HPCDD	1746-1799(4	426)	83752	(424)	95776	0.87	1.07	. 0	1,772	-
1234678-HpCDD	1799 (4	426).	31904	(424)	44624	0.71	1.07	0	0.825	-
				•	341025					
. 13C12-0CD0 1.S.	2018 (470)	1196730		1347540	0.89	0.42	100	61,61	\$
OCDD	0 (458)		(460)	7936	. - .	1.27	0	Ö	2.246
					•					

DATE:

03/04/91

PG.2

COLUMN: 60M X0.32M4 ID, 0.25 UM FILM DB-5

INJ TIME:

16:23

INSTRUMENT ID : CW-1

CHEMWEST ID:

736**3-5**RX

CURVE: ST1910304E,D,F,G,H

SAMPLE ID:

DC4

COMMENTS:

SAMPLE SIZE:

2.04 G

	SCAN #	AREA		AREA*	RAT10	RRF	STD	AMT	DL
***************************************				510494					
13C12-2378-TCDF 1.S.	1046 (316)	1341020	(318)	1674860	0.80	1.82	25	70 .68	, \$
2378-TCDF	1048 (304)	168352	(306)	220416	0.76	1.12	0	1.439	, -
TOTAL TODE	1011-1078(304)	38 3332	(306)	514640	0.74	1.12	0	3,362	-
	•			416229				•	
13C12-12378-PeCDF IS	1258 (354)	865686	(352)	.1376760	0.63	1.31	25	80.72	\$
		698849		१०८५३३४				7.28	
TOTAL PeCDF	1146-1312(342)	35956	(340)	33267	0.68	1,29	0	9.307	•
12378-PeCDF	1259 (342)	35956	(340)	53267	0.68	1.29	0	0.367	-
23478-PeCDF	1303 (342)	125144	(340)	199968	0.63	1.29	0	1.379	-
TOTAL HXCDF	1426-1606(376)	412512	(374)	555335	0.74	1.7	0	5.107	_
123478-HxCDF	1496 (376)	148192	(374)	178487	0.83	1.7	0	1,641	-
123678-HxCDF	1506 (376)	47016	(374)	57056	0.82	. 1.7	0	0.524	-
234678-HxCDF	1545 (376)	60904	(374)	110592	0.55	1.7	0	1.017	-
123789-HxCDF	0 (376)	0	(374)	4000	-	1.7	0	. 0	0.352
13C12-1234678-HpCDF SUR	1722 (422)	1014940	(420)	1079080	0.94	1.56	25	111.7	*
TOTAL HpCDF	1723 (410)	98160	(408)	117040	0.84	1.48	0	1.565	, -
1234678-HpCDF	1723 (410)	98160	(408)	_ 117040	0.84	1.48	0	1.565	-
1234789 - HpCDF	0 (410)	0	(408)	3822	.	1.48	0	0	0.519
OCDF	0 (442)	0	(444)	6176	-	1,66	0	0	1,337

CHAIN OF CUSTODY RECORD

VCHTEL PR	OJECT NO. \perp	7282-0	003	BAMPLER'S NAME J. Gilbrotti						
"BORATORY	PROJECT NO)		SAMPLER & BIGHATONE						
SITE IDENTIF	ICATION <u></u>	E Stanf	Secol	BECHTEL SUPERVISOR URuss Stenzel						
!	15	•	DATE	190	-					
				•						
SAMPLE ID NUMBER	MATRIX OF SAMPLE	TIME TAKEN	PRESERVATIVES	ARCHIVE	ANALYZE	REMARKS				
DC1	Saw Dost	12/20/10		V	8580	2 containers				
DC Z	Saw Dist	122190			EPA 8280	2 container				
DC3	SourDet	12120190		1	8280 EPA	2 Containers				
J61	Sun Dist	12/20/20		1	Hara	1 contrainer				
DCY	Saw Dust	12120/90	·	V	8280	2 containers				
JGZ	Saw Dost	12/20/90		V	Holal	1 container				
C5 1	Concrete	12/21/90		V	8120 B120	Crush				
CSZ	concrete	12/21/10		V	BISO	Crush				
cs3	concrete	12/21/90		V	P.P Met	crush				
				SAI	PLES REC	'D IN GOOD CONDITION AGE OR BREAKAGE				
RELINQUISH	ED BY Q	Lund	DATE/TIME 12/3	21/90	REC	ELIVED BY				
ELINQUISH					REC	EIVED BY				
RELINQUISH			DATE/TIME							
RECEIVED B	· Bill Me	Benge 1BI	LL MCBENCE' FOR	LABORATO	RY, DAT	TE/TIME 12/26/90 09:20				
AUTHORIZED	FOR DISPOS	BAL BY	T	YPE OF DI	BPOSAL					
RELINGUISH	ED TO		FOR (DISPOSAL.	DATE/T	IME				

Appendix C TCDDEquivalents Calculations

USEPA TCDD-EQUIVALENCE CALCULATIONS FOR GE-STANFORD

•							USEP	A/I-TEF	
	Concent	rations O	n Site (u	g/kg)	I-TEF		2378-TCDD		nts
	DC1	DC2	DC3	DC4		DC1	DC2	DC3	DC4
2378TCDD	1.50	0.50	0.47	0.54	1.00	1.50	0.50	0.47	0.54
TCDD	ND	ND	ND	ND		0.00	0.00	0.00	0.00
PeCDD	1.50	0.27	0.25	0.53	0.50	0.75	0.14	0.13	0.27
HxCDD	1.50	1.80	1.03	1.20	0.10	0.15	0.18	0.10	0.12
HpCDD	1.30	2.40	2.58	0.83	0.01	0.01	0.02	0.03	0.01
OCDD	4.00	1.40	2.10	2.20	0.00	0.00	0.00	0.00	0.00
2378TCDF	3.40	1.70	1.30	1.44	0.10	0.34	0.17	0.13	0.14
TCDF	0.58	4.30	3.40	ND	•	0.00	0.00	0.00	0.00
23478PeCDF	0.67	2.50	1.30	1.38	0.50	0.34	1.25	0.65	0.69
12378PeCDF	0.57	0.62	0.37	0.37	0.05	0.03	0.03	0.02	0.02
HxCDF	4.50	6.30	3.54	3.53	0.10	0.45	0.63	0.35	0.35
HpCDF	2.70	3.90	2.05	2.09	0.01	0.03	0.04	0.02	0.02
OCDF	2.10	2.10	1.30	1.30	0.00	0.00	0.00	0.00	0.00
•					TOTAL	3.60	2.96	1.90	2.16

CA DHS TCDD-EQUIVALENCE CALCULATIONS FOR GE-STANFORD

					CA DHS		Califo	rnia DHS	
•	Concent	rations 0	n Site (u	g/kg)	I-TEF		2378-TCDD	Equivale	nts
	DC1	DC2	DC3	DC4		DC1	DC2	DC3	DC4
2378TCDD	1.50	0.50	0.47	0.54	1.00	1.50	0.50	0.47	0.54
TCDD	ND	ND	ND	ND	0.00	0.00	0.00	0.00	0.00
PeCDD	1.50	0.27	0.25	0.53	1.00	1.50	0.27	0.25	0.53
HxCDD	1.50	1.80	1.03	1.20	0.03	0.05	0.05	0.03	0.04
HpCDD	1.30	2.40	2.58	0.83	0.03	0.04	0.07	0.08	0.02
OCDD	4.00	1.40	2.10	2.20	0.00	0.00	0.00	0.00	0.00
2378TCDF	3.40	1.70	1.30	1.44	1.00	3.40	1.70	1.30	1.44
TCDF	0.58	4.30	3.40	ND	0.00	0.00	0.00	0.00	0.00
23478PeCDF	0.67	2.50	1.30	1.38	1.00	0.67	2.50	1.30	1.38
12378PeCDF	0.57	0.62	0.37	0.37	1.00	0.57	0.62	0.37	0.37
HxCDF	4.50	6.30	3.54	3.53	0.03	0.13	0.19	0.11	0.11
HpCDF	2.70	3.90	2.05	2.09	0.03	0.08	0.12	0.06	0.06
OCDF	2.10	2.10	1.30	1.30	0.00	0.00	0.00	0.00	0.00
					TOTAL	7.94	6.02	3.97	4.49

Appendix D

Waste Classification and Certification

WASTE CLASSIFICATION FORM

- 1. Name and Address of Waste Facility.
 - a. Mailing address.

General Electric Company 275 Battery Street, 23rd Floor San Francisco, CA 94111

Location at which waste is generated, if different from above.
 6900 Stanford Avenue
 Los Angeles, CA

Contact person and phone number.

Jack Gilbraith, Agent
(510) 256-6110 ext. 405

- 2. Description of Waste:
 - Physical description.
 Wood Planking
 - Quantities produced per unit time.3.6 cubic yards one time only
 - c. Process used to generate waste.
 - d. Present method of waste disposal.

 None, wood remains part of building structure.
- Sampling Information:
 - a. Name and address of company that sampled the waste.

Bechtel Environmental, Inc.

50 Beale Street

(rev: FO3 9/83)San Francisco, CA 94119

- Name of person(s) who sampled the waste. Jack Gilbraith Richard Morales
- c. Dates and locations of collected samples:

TYPE OF SAMPLE COLLECTED	LOCATION	DATE COLLECTED	FIELD SAMPLE NO.
Saw Dust	see Figure 2-1 of	12/20/91	DC1
Saw Dust	attached report	12/20/91	DC2
Saw Dust	11	12/20/91	DC3
Saw Dust	"	12/20/91	DC4

- d. Description of sampling methodology:
 - (1) Sampling technique at site or facility.

 See Section 2.1 of attached document

(2) Sample handling and preservation prior to laboratory analysis.

Samples held in pre-cleaned 4 oz. wide mouth glass jars equipped with teflon lin lids

Samples were cooled to 4°c.

- 4. Testing Laboratories Information:
 - a. Name and address of laboratories:

CompuChem
Chemwest Analytical Laboratories, Inc.
600 W. North Market Street
Sacramento, CA 95834
State Certificate No. 185, EPA-SAS Dioxin Contract Program

b. Test methods and references:

SPECIFIC TEST	METHOD*	REFERENCE
1. Organic Analysis		
- Chlorinated Pesticides		
- Polychlorinated Biphenyls	EPA Method 8080	SW 846, EPA 1982
- Chlorophenoxy Acid Pesticides		
- Nitroaromatics		
- Organophosphorus Pesticides		
- Phenols		
- Polynuclear Aromatic Hydrocarbons		
- Priority Pollutants		
- Volatile Organics		
- Carbamates		
- Other (specify) Dioxin/Furan	EPA Method 8280	SW 846, EPA 1982
Inorganic Analysis, MetallicAntimony		
- Arsenic		
- Barium		
- Beryllium		
- Cadmium		
- Chromium (VI)		
- Chromium (total)		
- Cobalt		

SPECIFIC TEST	METHOD*	REFERENCE
norganic Analysis, Metallic (co	ntinued)	
- Copper		
- Lead, inorganic		
- Lead, organic		
- Mercury		
- Molybdenum		
- Nickel		
- Selenium		
- Silver		
- Thallium		
- Vanadium		
- Zinc		
- Other (Specify)		
Inorganic Analysis, Non-Met	allic	
- Total cyanide		
- Cyanide (chlorination)		
- Fluoride		
- Sulfide		
- · Asbestos		
- pH		
- Free liquids		
- Other (specify)		
 Special Tests 		
- California Waste	•	
Extraction Test - Tests for Hazardous Properties	Sec. 66700	
- Aquatic 96 hr LC ₅₀		
- Flashpoint		
- Corrosivity		
- Head Space	Sec. 66696(a)(10)	
- Other (specify)		

^{*} If this is not a standard method (APHA-AWWA-WPCF, ASTM, AOAC, EPA, etc) please attach a copy of method with this report.

C. Names and qualifications of persons testing waste.

Jill B. Hanes, PhD, Vice President of Technical Services
Elaine Wong, GC/MS Manager
CompuChem
Chemwest Analytical Laboratories, Inc.
600 W. North Market Blvd.
Sacramento, CA 95834

See Resumes in Chamwest Quality Assurance Program Plan Cattached)

d. Preparation of laboratory samples from field samples.
See EPA Method 8280, SW846, Third Edition 1986
Section 9

e. Sample identification information:

TYPE OF SAMPLE TESTED	FIELD SAMPLE NO(S)	LABORATORY SAMPLE NO.	DATE TESTED
Saw Dust	DC1	7363-1RX	2/06/91
Saw Dust	DC2	7363-2RX	2/06/91
Saw Dust	DC3	7363-3RX	2/06/91
Saw Dust	DC4	7363-5RX	3/04/91
			··
	,		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

5.	Quali	ty Assurance and Control: (See Appendix 1)
	а.	On file with the DOHS Hazardous Materials Laboratory;
		yes no
	5.	Enclosed; yes X no; attached document
	c.	Will be forwarded to DOHS by;
6.	Labor	atory Results
	a.	Waste Components and California Waste Extraction Test Summary (Form 1).
	b.	Aquatic Bioassay. Use California Department of Fish Bioassay Data Sheet.
	c.	Submission of Data and Reports (See Appendix 1).
7.	Acute	toxicity calculations from published data: (Form 2)
8.	Corros	sivity, Flammability, Reactivity (Form 3)
9.	Refere	ences (Attach complete citations)
10.	Certif	ication by person(s) who is the responsible manager of the facility.
		"I certify under penalty of law that I have personally examined and am familiar with the information submitted in this notification and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."
Signatu Printed	ure	Jack J. Gilbraith
Title _		Agent

FORM 1

WASTE COMPONENT AND WASTE EXTRACTION TEST SUMMARY

Laboratory Sample #/363	-IRX Date Ana	alyzed 2/06/91
Type of Sample Tested Sawd	ust	
I. Chemical Analyses and E-		•
I. Chemical Analyses and E	xtractions	
Waste		
Component	Total Concentration (mg/kg)	California Extraction Test (mg/1)
Inorganic Analysis:		
Antimony		
Arsenic		
Barium		
Beryilium		
Cadmium		
Chromium (III)		
Chromium (VI)		
Cobalt		
Copper	· .	
Fluoride		
Lead		
Mercury		
Molybdenum		
Nickel		
Selenium		
Silver		
Thallium		
Vanadium		
Zinc		
Organic Analysis:		
Chlorinated Pesticides		
Polychlorinated Biphenyls		
Chlorophenoxy Acid Pesticides		
Nitroaromatics		
Organophosphorus		
Pesticides		
Phenois		
Polynuciear Aromatic		
Hydrocarbons		
Priority Pollutants		
Volatile Organics		
Carbamates		
Other (Specify) Dioxin	< 0.0015	
pH	Not Applicable	
TCDD equiv.	< 0.0036	

II. Bioassay

See Section 3.2 of attached document

Concentration (mg/l)

96-hr LC₅₀ for Waste

III. Head Space Vapor Concentration

Not applicable to waste

Component	Molecular weight	Weight of component in syringe (mg)	Head space vapor concentration
		·	

$$(CA) = \frac{(QA)(R)}{(MW)(G)}$$

where (QA) = quantity of component in head space vapor (mg)

(MW) = molecular weight (mg/mmole)

(R) = 24.5 ml/mmole

(G) = $2 \times 10^{-6} \text{ M}^3$

(CA) = Head space vapor concentration (ppm)

FORM 1

WASTE COMPONENT AND WASTE EXTRACTION TEST SUMMARY

Laboratory Sample # 7363-2R	RX	Date Analyzed	2/06/91
Type of Sample Tested Sawdust	; :		
. C		,	
I. Chemical Analyses and Ext	tractions		•
		·	•
Waste Component	Total Concentrati (mg/kg)	ion	California Extraction Test (mg/1)
Inorganic Analysis: Antimony			
Arsenic			
Barium			
Beryllium			
Cadmium			
Chromium (III)			
Chromium (VI)			
Cobalt			
Copper			
Fluoride			
Lead			
Mercury			
Molybdenum Nickel			
Selenium			
Silver	<u> </u>		
Thallium		· · · · · · · · · · · · · · · · · · ·	
Vanadium		··	
Zinc		· · · · · · · · · · · · · · · · · · ·	
Organic Analysis:		 	
Chlorinated Pesticides	•		
Polychlorinated Biphenyls			
Chlorophenoxy Acid			
Pesticides			•
Nitroaromatics			
Organophosphorus			
Pesticides		•	•
Phenois			
Polynuclear Aromatic			
Hydrocarbons		•	
Priority Pollutants			
Volatile Organics			
Carbamates			
Other (Specify) Dioxin	< 0.0005		
рН	Not Applicab	ole	
TCDD equiv.	5 0 003		

II. Bioassay

See Section 3.2 of attached document

Concentration (mg/i)

96-hr LC₅₀ for Waste

III. Head Space Vapor Concentration

Not applicable to waste

Component	Molecular weight	Weight of component in syringe (mg)	Head space vapor concentration
		•	

$$(CA) = \frac{(QA)(R)}{(MW)(G)}$$

where (QA) = quantity of component in head space vapor (mg)

(MW) = molecular weight (mg/mmole)

(R) = 24.5 ml/mmole

 $(G) = 2 \times 10^{-6} \text{ M}^3$

(CA) = Head space vapor concentration (ppm)

FORM 1

WASTE COMPONENT AND WASTE EXTRACTION TEST SUMMARY

Laboratory Sample #	-3RX Date A	nalyzed <u>2/06/91</u>
Type of Sample Tested Sav	vdust	
I. Chemical Analyses and		
I. Chemical Analyses and	Extractions	,
Waste	Total	California
Component	Concentration (mg/kg)	Extraction Test (mg/!)
Inorganic Analysis:		
Antimony		
Arsenic		
Barium		
Beryllium		
Cadmium		
Chromium (III)		
Chromium (VI)		
Cobait		
Copper		
Fluoride		
Lead		
Mercury		
Molybdenum		
Nickel		
Selenium		
Silver		
Thallium		
Vanadium		
Zinc Organic Analysis:	·	
Chlorinated Pesticides		
Polychlorinated Biphenyls		
Chlorophenoxy Acid		
Pesticides		• .
Nitroaromatics		
Organophosphorus		
Pesticides		•
Phenois		
Polynuciear Aromatic		
Hydrocarbons		
Priority Pollutants		
Volatile Organics		
Carbamates		
Other (Specify) Dioxin	< 0.0005	
рH	Not Applicable	
TCDD equiv.	< 0.0019	

Π.	Bioassa	٧
ii.	D109229	٧

See Section 3.2 of attached document

Concentration (mg/l)

96-hr LC₅₀ for Waste

III. Head Space Vapor Concentration Not applicable to waste

Component	Molecular weight	Weight of component in syringe (mg)	Head space vapor concentratio			

$$(CA) = \frac{(QA) (R)}{(MW) (G)}$$

where (QA) = quantity of component in head space vapor (mg)

(MW) = molecular weight (mg/mmole)

(R) = 24.5 ml/mmole

 $(G) = 2 \times 10^{-6} \text{ M}^3$

(CA) = Head space vapor concentration (ppm)

FORM 1

WASTE COMPONENT AND WASTE EXTRACTION TEST SUMMARY

Laboratory Sample #7363	<u>-5RX</u> D	ate Analyzed 3/04	/91
Type of Sample Tested Sawd	ust		
I Chemical Applyona and I	-		
I. Chemical Analyses and I	Extractions		
	•		
Waste Component	Total Concentration (mg/kg)	Extrac	ifornia tion Test ng/l)
Inorganic Analysis: Antimony			
Arsenic			
Barium			
Beryllium			
Cadmium			
Chromium (III)			
Chromium (VI) Cobalt			
Copper			
Fluoride			
Lead			
Mercury			
Molybdenum			
Nickel			
Selenium			
Silver			
Thallium		<u> </u>	
Vanadium			
Zinc			
Organic Analysis:			
Chlorinated Pesticides		· · · · · · · · · · · · · · · · · · ·	
Polychlorinated Biphenyis	19		
Chlorophenoxy Acid Pesticides			
Nitroaromatics		,	
Organophosphorus			
Pesticides			
Phenois			
Polynuciear Aromatic			
Hydrocarbons			•
Priority Pollutants			
Volatile Organics		·	
Carbamates			
Other (Specify) Dioxin	< 0.00054		
pH	Not Applicable		
TCDD equiv.	< 0.0021		

II. Bioas	SAV

See Section 3.2 of attached document

Concentration (mg/1)

96-hr LC₅₀ for Waste

Head Space Vapor Concentration Not applicable to waste

Component

Molecular weight

Weight of component in syringe (mg)

Head space vapor concentration

$$(CA) = \frac{(QA) (R)}{(MW) (G)}$$

where (QA) = quantity of component in head space vapor (mg)

(MW) = molecular weight (mg/mmole)

(R) = 24.5 mi/mmole

 $(G) = 2 \times 10^{-6} \text{ M}^3$

(CA) = Head space vapor concentration (ppm)

FORM 2 ACUTE TOXICITY CALCULATIONS (b)

WASTE COMPONENT	TOTAL CONCENTRATION PPM	AVERAGE ^(a) LD ₅₀ ORAL RATE (mg/kg) (ref.)	%Ax LD ₅₀ Ax	AVERAGE ^(a) LC ₅₀ DERMAL (mg/kg) (ref.)	%Ax LD ₅₀ Ax
	See S	ection 3.1.1 of attac	hed document		
		or actual	ned document		
					·
					
					* *
		SUM		SUM	
		CALCULATED TOXICITY		CALCULATED TOXICITY	

CALCULATIONS SUMMARY

NOTE:

- (a) Average or most reliable values listed for individual compounds.
- NOTE:
 (a) Average or most reliable.
 (b) Calculated LI)₅₀ = $\frac{100}{\text{Sum } \frac{\% \text{ Ax}}{\text{LI)}_{50}}}$

where LD₅₀ $A_x = LD_{50's}$ of the pure toxic constituents A_1 , A_2 , A_3 % Ax = concentration by weight in the waste (total ppm/10,000)

FORM 3 CORROSIVITY, FLAMMABILITY, REACTIVITY OF WASTE

Parameter	Experimental data or certification by chemist@	Reference #
Corrosivity		
	N	
- pH* 0% dilution 50% dilution	И	see item 4b
- corrosion rate* (mm/yr)	N	see item 4b see item 4b
Flammability		
- Flash point* (°C)	X	see item 4b
- Causes fire	N	300 110111 40
- Flammable gas	N	
- Flammable solid	N	
- Oxidizer	N	
Reactivity		· ·
- Unstable	N	•
- Reacts with HaO	N	
 Forms potentially explosive mixture with H₂O 	N	
- Generates toxic gases with H ₂ O	N	
 Is a cyánide or sulfide between pH 2 and 12.5 	N	
which generates toxic gases		
 Detonates or reacts at standard temperature, pressure 	N	
 Detonates if heated under confinement or with initiating source 	N	
- Forbidden or class B explosive	N	

NOTES:

@ Fill in as follows: Code Certification

yes Ν no X

not applicable

Optional

Supply experimental data

* comments or attachments

APPENDIX I

QUALITY ASSURANCE GUIDELINES FOR SUBMISSION OF HAZARDOUS WASTE SAMPLE DATA

1. Quality Assurance (QA) Manual

Each laboratory shall have developed a QA manual which is utilized on a routine basis by the laboratory staff. Although a copy of a QA manual need not be submitted with each set of analytical reports, the laboratory should be prepared to submit a copy upon request by the Department. As a minimum, the QA manual should descibe the following.

- a. How the laboratory reports are generated, maintained, checked, and filed.
- b. How samples are collected, stored, and logged in and the documentation for sample chain-of-custody.
- c. Bench level quality control procedures and frequencies of application, including the acceptable limits for replicates and percent recoveries and corrective actions. Bench level quality control procedures should include:
 - (i) Method blanks
 - (ii) Field replicates
 - (iii) Laboratory replicates
 - (iv) Spike samples with test or surrogate compound(s)
 - (v) Confirmatory methods
- d. Maintenance and calibration of instruments.
- e. Types and analytical frequency of reference samples from EPA, National Bureau of Standards, etc.

2. Minimum Requirements for Submission of Data

- a. Cite the reference(s) for the extraction and analytical methods used by the laboratory.
- b. If the method is a modification of a standard method, a description of the modification should be submitted for review.
- c. If nonpublished methods are used, provide detailed descriptions of the methods.
- d. Several examples of chromatograms, standard curves, and printouts of GC/MS data should be submitted along with the analytical reports.
- e. Results of replicate and spike analyses should be submitted along with the analytical reports. As a general guideline, 10-15% of samples analyzed should be in replicate and 10-15% of samples should be spiked and percent recoveries calculated.
- f. Results of pertinent reference samples that the laboratory has analyzed during the past 6 months should be submitted along with the analytical reports. Pertinent reference samples are those with a similar matrix and/or analyte to the project samples.

CALCULATIONS REFERENCES

- 1. National Institute of Occupational Safety and Health 1979
- 2. International Technical Information Institute, Japan 1975

METHODS REFERENCES

- 1. A.E. Greenberg, J.D. Connors, D. Jenkins (Eds.) Standard Methods for the Examination of Water and Wastewater, 15th Ed American Public Health Association Washington D.C. 1981
- 2. U.S.E.P.A. Test Methods for Evaluating Solid Wastes Physical/Chemical Methods, SW-846, 2nd Ed, 1982
- 3. California Department of Health Services <u>Procedures Manual</u>
- 4. California Administrative Code Title 22, Division 4, Chapter 30
- 5. C.S. Caruso Chemistry of Cyanide Compounds and Their Behavior in the Aquatic Environment Carnegie Mellon (1975)

State of California DEFARTMENT OF FISH AND GAME Fish and Wildlife Water Pollution Control Laboratory Rancho Cardova, CA 95670

SAMPLE AND BICASSAY INFORMATION

Stotic	_Cont. Flow Species									_	WPCL No											
Screening	Definitive Common Name								_													
Dilution Watermg/						x Lengthmm x Weightg Number per Tank								Collectors No								
																					Alkalinity	alinitymg/l
Tank Volume				_liter	S	Acclimation Temp.						•	C	Project								
											_				,					•		
		NITI	AL		24	4 Hr 48 Hr							72	72 Hr 96 Hr								
DATE:					_																	
TIME :																						
	DO	°c	рН	DO	°c	рН	#м	DO	°c	рН	#м	DO	°c	рн	#м	DO	°c	рH	#M	N DE		
CONTROL																_						
																				 		
																				-		
																				-		
																	<u>{</u>			\vdash		
					,														_	-		
							_													-		
								!	<u> </u>			<u>-</u> _!	- 1				!			-		
			Ī	<u>'</u>						- !				1		<u>!</u> i	!	- <u> </u>		-		
								<u>'</u>		<u>!</u>						!				-		
	- 1									1		! 	<u> </u>							-		
	!					. !																
emarks:								i.'														
								•							-							
										-												
50																						
250 Method																						
·	14	JUI1 - 11	iiie Wf	111121	ρυισ	HUN.		,		Froi) I I			N	rovino	J Ave	rage	_				
nalyst:										·		·		_ ם	ate:							